If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-8x=8
We move all terms to the left:
7x^2-8x-(8)=0
a = 7; b = -8; c = -8;
Δ = b2-4ac
Δ = -82-4·7·(-8)
Δ = 288
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{288}=\sqrt{144*2}=\sqrt{144}*\sqrt{2}=12\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-12\sqrt{2}}{2*7}=\frac{8-12\sqrt{2}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+12\sqrt{2}}{2*7}=\frac{8+12\sqrt{2}}{14} $
| x-20=x-12 | | 10=(0.20)(w) | | 4(x+2)–3=7x–4 | | –(4x–9)–(–8x+4)= | | 7y=3y+1/–5 | | 36=25+c^2-2*5*c*0.5 | | 2x+10x=26 | | c^2-5c-9=0 | | (3x-4)/(5x-9)=0 | | 8x+3=6x–11 | | 2x+(x+100)=260 | | –5y=–20 | | 3y=–12 | | 3∙(2x+3)=4x+11 | | c^2+7c-120=0 | | c^2-7c-120=0 | | 3(2x+3)=4x+11 | | 4x-17=3x= | | 7x+2x=31 | | 1(8x-2)=9x-9 | | 57=(15.7)(x) | | 12+|2x–2|=20 | | 8x2+7x-120=0 | | X2+5x-120=0 | | B=−2t+10 | | 0.9x^2-2x+0.9=0 | | X-7x9=108 | | 4n-1=T | | -4(6y-1)-2=-12(2y+4)+50 | | 17-5(2x-9)=1(-6x+10)+8 | | 28^2x+7=28x | | 4y-3/5=5 |